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Abstract

In previous papers, we presented an empirical methodology based on Neu-
ral Networks for obtaining fuzzy rules which allow a system to be described,
using a set of examples with the corresponding inputs and outputs. Now that
the previous results have been completed, we present another procedure for
obtaining fuzzy rules, also based on Neural Networks with Backpropagation,
with no need to establish beforehand the labels or values of the variables that
govern the system.
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1 Introduction.

A fundamental problem and one with multiple applications in Artificial Intelligence
is that of identifying and reproducing the behaviour of systems. Amongst the main
areas of its application are to be found: the acquisition of knowledge and that of
determining causal relationships.

The most widely used method for representing knowledge is the one based
on rules. In many real problems, describing the system by using fuzzy rules has
advantages, either because the description is more appropriate for the real situation,
or because the underlying information in the system is imprecise or fuzzy, using
fuzzy techniques as an efficient tool for handling uncertainty.

In this paper some methods are described for carrying out the automatic acqui-
sition of knowledge, using Artificial Neural Networks (ANN). On the one hand, a
methodology presented previously in [BEN94, BEN95], and on the other hand, an-
other methodology which uses, in the first phase, the ideas proposed in [SES93] for
extracting classic production rules. Furthermore, a method of this kind may help
in the study of ANN, by attempting to offer an interpretation of their internals.

The features of the ANN, such as their capacity for learning and generalizing
using examples, and their robustness against noise, make them particularly effi-
cient for gathering the information contained in a set of data and reproduce them

*This work has been partly supported by project PB 92-0945 from DGICYT. Madrid
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faithfully. Therefore the knowledge attained by an ANN may be expressed through
the learning of a set of samples in the form of fuzzy rules.

2 ANN for acquiring knowledge.

In [SES93], a method was proposed for obtaining a system’s classic production
rules, of the following kind:

R;: Ifa’i/\aé/\.../\aﬁ“ then b;

This rule states that if attributes aé- are presented in an example then a b; class
object is involved (they consider binary variables). The rules must be as simple
as possible, i.e., they must be sufficient to characterize the object and have the
smallest number of attributes in the antecedent. The key idea is that of training a
multilayer ANN by incorporating its own outputs as extra inputs and studying the
relationship between the weights of the real inputs and those of the outputs (extra

inputs) with the hidden layer. Essentially the method may be summed up by:

1. An ANN with a single hidden layer is trained, in which the outputs are also
used as extra inputs. That is to say, if the system’s data have n inputs and
m outputs, the training examples have n + m inputs and m outputs. The
Backpropagation algorithm is used.

2. For each pair (input 4, output j), a measure of the agreement or proximity
between the weights of these neurons to the hidden layeris calculated, the
closer the relationship is the smaller it shall be:

h

SDCPZ']' = Z(w’k — wjk)2
k=1

3. A new set of samples is obtained from the examples, by changing the inputs
for their complement to 1, that is, input 7 is changed for 1 - 7. An ANN with
no hidden layers is trained with this set of samples and by using Hebb’s rule.
Thus, inhibiting relationships are obtained between the inputs and outputs.
The measure of the correlation between an input and an output shall be its
own weight V;; in the trained network.

4. The relationship between each input and output is measured by means of

p’I‘Odij = SDCPZ'J‘ - Vij

5. For every output, the inputs are ordered according to the growth direction
of the values of these products. A suitable cutoff point is established and the
attributes which remain below the cutoff point are considered to be relevant.
The rule is constructed by combining the attributes selected as relevant in
the antecedent and putting the output in the consequent.
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The method may easily be extended to the case in which attributes with a finite
number of possible values are considered. In [SES93], some possibilities are pointed
out for the case in which there is no suitable cutoff, which would indicate more
than one rule for that particular output.

In [SES93], this method is applied to the example of the 7 segment LED, showing
good results.

In [SES92], instructions are also given for extending the method to the case
with continuous attributes. In this case the production rules take the form:

Ri: If (Umint <ab <Vpmazi) Ao A (Umin;i < afu < Upazy,, ) then b;

ni

In this version of the method, all of the steps from the previous case are carried
out, but in step 5 only the structure of each rule is obtained (which we shall call
pre-rule), thereby indicating the presence of relevant attributes. Suitable ranges
for these attributes are established by following the steps below:

1. Find the examples covered by each pre-rule. For this purpose a measure
of the sum of the square differences is used and a degree ¢; is assigned to
each rule. This degree may be different for different rules and, in fact, it is
dynamically modified until it manages to ensure that all the examples are
covered by a rule.

2. For every attribute included in the rule, its validity range is established as
the interval for which the extremes are the minimum and maximum of that
attribute’s values for the examples covered by the rule.

3 Obtaining fuzzy rules.

In many real situations the system has to be described using fuzzy rules (e.g., the
data is vague and is better represented using fuzzy numbers) or it provides gain
because fuzzy rules represent the system more appropriately.

We set out two methodologies for ANN. One was first described in a previous
paper, based on the prior construction of all the possible rules, then selecting the
best combination thereof. The second one, which is based partly on the method
described in Section 2, constructs rules using ANN trained with the examples.

3.1 Selection Methodology (descendant).

In [BEN94], we presented a methodology for obtaining fuzzy rules to describe a
system from a set of examples of its behaviour and which basically consists of:

1. We suppose that we have identified the relevant variables in the description
of the system’s behaviour, the values of which are labels. The labels are

represented by trapezoidal fuzzy numbers that are processed in the ANN as
described in [REQ95].

We train an ANN (EN) with a set of examples of the system’s behaviour.
The real value in the examples are processed as singleton fuzzy numbers.
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2. We construct all the possible rules, according to the labels (values) of the
variables identified.

3. We place each rule’s antecedents into the network and we compare the latter’s
output with the consequent. We reject the rules that clearly do not adapt
to the system (EN) and we obtain the first selection of relevant rules in the
description thereof.

4. From amongst all the possible combinations of preselected rules, the combi-
nation which best adapts to the ANN (EN) and which has the lowest cardinal
is taken as the definitive set of rules.

In order to reduce the computing time in step 4, in [BEN95] we used a greedy
algorithm. The underlying idea is simple: it involves starting out from an empty
set of rules and then adding on the best rule from the ones remaining in each step,
until the set reaches the desired criterion.

Let the set of samples M = {e;}, and R = {R;} the set of rules (step 3). The
[-th input component of the j-th example is mé and the k-th of output y}“. The
rules are presented in the form:

If X;is A; and ... and X,, is 4,, then Y is B

1

Definitions. Degree of Coverage' of the rule R; over the sample e;:

SS(IP(AL) — ab)2 + 3 (TP(B) — )2
=1 k=1

MaxD ’

where IP(D) is the value of the Average Index? of fuzzy set D [CAM89, GON90;
and MaxD is the maximum value for the expression in the numerator. Ge(Ri,ej)
indicates the degree in which R; represents e;.

Partial Degree of Coverage of a set of rules C' and a rule, R;:

Gc(Ri,ej) =1-

GPe(C,R;) = f:l Ge(Rj, er) — Ge(Cler), if Ge(Rj,er) — Ge(Cher) >0
AL ftg) = P 0, otherwise

G Pc indicates by how much the coverage of the set of rules is improved when
R; is added to it. GPc(C, R;) is zero when a rule does not improve the coverage
of the set.

In each step, the greedy algorithm selects the rule which makes the coverage of
the set the greatest possible, or rather, the rule with the highest partial degree of

L Another definition of the degree of coverage adjusted to the system of inference or control
being studied may be:
d(y;, S(Ri, zj))
MazxzD
where d is a metric in the output space and S(R;,x;) represents the fuzzy system’s output for x;
when its only rule is R;.
2 Another index function on fuzzy numbers could be used instead of the Average Index.

Gc(Ri,e5) =1 —



Neural Methods for Obtaining Fuzzy Rules 375

coverage. The process ends when all the samples (or a high percentage of them, 3)
are covered to a degree above a certain level, a. We may express the stop criterion
as when the average degree of coverage is greater than or equal to 5. With these
two parameters we can regulate the precision which we demand of the description
which returns the algorithm. The algorithm is now expressed as:

1. C + {R;} such that GM¢(R;) is maximum.

2. While ((GM¢c(C) < aff) and (|C] < |R]))
C + CU{R;} such that R; ¢ C and GPc(C, R;) is maximum.

3. The set of rules is C.

The algorithm produces a result that is quasi-optimal and may be improved by
modifying step 1 in order to construct several sets of rules by starting out from a
different rule each time and, in the end, keep the best one from all those obtained.

Neither of the two versions ensures obtaining the optimal set of rules but they
certainly are pretty fast. The algorithmic complexities are O(|M| - |R|?) for the
first version and O(|M|-|R|?) for the second, which are quite small when compared
to an exhaustive search, which would involve O(|M]| - 2/%).

3.1.1 Experimental Results.

In order to check the performance of the method for obtaining rules, we applied it
to the problem of a car’s braking system [WOL91]. This involves finding the force
that has to be applied to a car to keep it at one point by taking into account its
position and speed. Morover, random forces with varying modulus and sense have
to be taken into account. The problem may be solved with a fuzzy controller which
uses a base of seven rules with the following structure:

R;: If pis A; and v is B; then f is C;

where p is the position, v is the speed and f is the force. These are three linguistic
variables that take values in sets with a granularity of 5, 3 and 5, respectively.

In order to apply step 1 from the method, we use 250 control examples in which
real values are represented as singleton fuzzy numbers. With these examples and
the Backpropagation algorithm we train a network with 8 input neurons and 4
output neurons.

Applying step 2 produces 75 possible rules which, after carrying out step 3, are
reduced to 15.

In order to obtain the definitive set of rules we employ the greedy algorithm,
using different values for the degree of coverage. By varying the value of this degree
between 1 and 0.77, we have obtained sets of rules of cardinals between 11 and 2.
To illustrate this, look at the following examples: for a degree of 0.812 the set has
7 rules and for a degree of 0.8, the set is made up by 4.

We can establish the level of precision which we demand from the description
by modifying the average degree of coverage accordingly, which may be translated
into the degree of effectiveness in the case of fuzzy rules for control.
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In accordance with the results obtained in the experiments, the following com-
ments and conclusions may be made:

e The set of 7 rules obtained with an average degree of 0.812 is different from
that obtained in [WOL91]. Nevertheless, the control of the system is equally
flawless. With the sets of 5 and 4 rules, good control is still achieved, though
the maximum external force that may be controlled is slightly reduced.

e The algorithm takes advantage of the neural networks’ properties of general-
ization and robustness in order to obtain fuzzy rules from a set of examples.
The main aim when drawing up the rules is to obtain a description of the
system’s behaviour, but they are also useful for fuzzy control. The precision
of the description given may be regulated by means of two parameters.

e The method is independent from the way in which the linguistic labels are
established. Bearing in mind that the main objective is obtaining a descrip-
tion of a process which is meaningful for a human expert, the set of labels
must have a cardinal limited by the granularity detected and the form of its
membership functions must meet some requirements like those described in
[LEE9Q].

e A greedy algorithm is used in the final step which offers a fast and simple
solution. Alternatively, some kind of combinatorial optimization technique
might be used such as Simulated Annealing, the Boltzmann Machine or Ge-
netic Algorithms.

e In real cases in which the involvement of human experts is important for the
descriptions of coverage, a personal decision-making index associated with
the expert would be used, as is described in [REQ95].

3.2 Constructive Methodology (ascendant).

A description of the knowledge included in a set of data which is closer and more
intelligible for a human being is the rule of production. Systems based on fuzzy
rules are, the same as ANN, universal approximators [CAS95] and, furthermore,
they can justify the answers they give by supporting them on their rule base.

The case of data in which the attributes are continuous is extremely common,
however representation using the rules that are generated with the method de-
scribed in [SES92] is not appropriate. We believe that an approximation more
in line with reality would be to use fuzzy rules, by considering each attribute as
a variable, the possible values of which are fuzzy sets in the definition interval.
On the other hand, once the rules have been established, the sets may be labeled
thereby giving the rules a more appropriate aspect for their use and understanding
by human beings. This aspect is of crucial importance if we attempt to create a
system that would offer us justified answers.

With this new outlook, a construction method was designed which expresses
the knowledge contained in a set of data in the form of fuzzy rules.
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Firstly, we consider that the data obtained from the system and which we shall
use in the training of the ANN, are expressed as real numbers (crisp), normalized
in [0,1]: nevertheless, the variables, which take part in the rules which shall de-
scribe the system, are to be fuzzy and evaluated with linguistic labels expressed as
trapezoidal fuzzy numbers.

The first approximation we suggest is the following:

1.

The set of data is transformed by normalizing the inputs and outputs. An
ANN is trained with a single hidden layer, adding the outputs as extra inputs.

For every input ¢ and output j (in the network’s input), we calculate

h
Sij = (wix — wjr)®

k=1
where k goes through the neurons of the hidden layer.

The set of data is transformed by standardizing the inputs and outputs. The
inputs are also changed by their complement to 1. An ANN, without hidden
layers, is trained using Hebb’s rule. The trained network’s weights are now
Vij-

The relationship between every input and output is measured using;:
prod;j = Sij - Vij

For each output j, these products are placed in order from the lowest to the
highest.

We look for an appropriate cutoff point in these ordered products and we
consider the inputs ¢ (variables) which remain below the cutoff point as con-
tributing to the output j. Thus we obtain what we may consider as the
structure of a rule or a pre-rule for each output j, expressed in terms of the
variables as:

Pg, : X}, X}, X} > Y]}

In order to obtain the labels associated with the variables in the pre-rule we
carry out the following;:

e In the training examples we only consider the component parts of the
variables that are in the pre-rule. Using these subvectors we make a
fuzzy clustering, based on the proximity of the values of Y; (or which
might also have close values in the X; in the pre-rule). For this rule we
reject the examples that it does not classify well.

e With the examples from each class we construct the label’s member-
ship function for each variable. Thereby we obtain the same amount of
effective rules and classes in the clustering.
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A simple way is to consider triangular or trapezoidal numbers. For a
variable, the support would be given by its minimum and maximum
values in the examples of that kind. The mode would be given by
the median (quartiles 1 and 3, for trapezoidal ones) of the values of
that variable in the class examples). Another way is obtaining a linear
approximation of the distribution of frequencies in those values of the
variable).

Secondly, we consider that the system’s examples are expressed by labels or
fuzzy numbers (trapezoidal ones (a, b, ¢, d)® without any loss of generality). In
this case the method may be applied as well, but with changes in the following
steps:

e In step 1, we use the processing of the fuzzy numbers in the network as
described in [REQ92, REQ94], but also considering the outputs as inputs.

e In step 2, in order to calculate S;;, each addend is now obtained as

((a(ei) — als;))* + (b(ei) = b(s;))* + (c(es) — c(s;))* + (d(e:) — d(s7))*)
4

where x(e;) represent the weights of the i-th input fuzzy number for the
corresponding inputs (a, b, ¢, d) which represent the fuzzy number, and
x(s;) indicates the same thing for the j-th output fuzzy number placed as an
input.

e In step 3, the V;; are obtained in the same way as in the previous point.

The remaining steps in the process are carried out in the same way.

3.2.1 Experimental Results.

To illustrate the method, let us consider a simple example. This is the well-known
iris plant problem. The goal is to recognize the type of the iris plant to which a
given individual belongs. There are three classes of plants: setosa, versicolor and
virginica. The data set is composed of 50 instances per class giving a total of 150.
One class is linearly separable from the other two; while the latter are not linearly
separable from each other. Each instance features four continuous attributes: petal
length, petal width, sepal length, and sepal width. We coded the three possible
classes as three values, so every sample was composed of seven components.

In the first stage, which is obtaining the relevant input for each output we use
two neural networks. The first one had 7, 3 and 3 neurons in input, hidden and
output layers, respectively. The second one only has input and output layers with 4
and 3 units in each one. After the training, both nets have reached a good enough
learning level. Then we proceed to obtain the so-called prerules. The following
ones were attained:

3We represent fuzzy trapezoidal numbers by four parameters (a,b,c,d) where [a,d] is the
support set and [b, ¢] is the mode of the fuzzy set
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1. petal-length — setosa
2. sepal-width, petal-length, petal-width — versicolor
3. petal-length, petal-width — virginica

Next, we proceed to establish the fuzzy sets for each variable. For each prerule,
the subset of sample data which conforms to was selected, and then a clustering
method was applied to. We considered the Chiu method [CHI94] method, which
produces both the number of cluster and their centers. Then the examples are
assigned to the cluster which center is the closest. Each cluster gives rise to a rule
which has the structure (antecedents and output) given by the prerule and the
antecedents fuzzy values as fuzzy trapezoidal numbers calculated out of the cluster
members (cluster with 1 or 2 examples are not considered). In order to obtain the
rules, the data are split in two parts, in a random way (100 examples to obtain the
rules and 50 to test the rules). This process was applied several times. Because of
the random process, each time the rules can be slightly different. So we had the
following results, expressed in percentage of hits:

Experiment | Number of rules | Training Set | Test set
The worst 4 97.0 88.0
The average ) 96.0 94.0
The best 4 96.0 96.0

In the best case, we have obtained the following rules:

1. If petal-lenght is (1.06, 1.30, 1.60, 1.94) — setosa

2. If sepal-width is (1.93, 2.50, 3.00, 3.47) and petal-length is (2.89, 4.00, 4.60,
5.20) and petal-width is (0.96, 1.20, 1.50, 1.84) — wversicolor

3. If petal-length is (4.76, 5.00, 5.60, 5.64) and petal-width is (1.35, 1.80, 2.20,
2.45) — virginica

4. If petal-length is (5.65, 5.80, 6.30, 6.75) and petal-width is (1.76, 1.90, 2.30,
2.54) — virginica

Also, we have used the 150 examples to obtain the rules. Then we have obtained
five rules and 96% of hits over all the examples.

So the obtained results are good in general. We have checked that setosa plants
are always classified correctly, and mistakes being committed with the other two
classes.

We think that better results could be obtained with a different way of perform-
ing the clustering.
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4 Conclusions and final comments.

Two methodologies have been described for obtaining fuzzy rules from a system,
about which a set of examples of its behaviour is known, on the basis of possibly
relevant variables or attributes in its behaviour.

Both methodologies consider, in the first place, the training of an ANN, using
the backpropagation algorithm and the examples available from the system. Both
methodologies may be used, both whether the examples of the system are given as
crisp values or as fuzzy numbers (e.g., labels).

The first methodology ([BEN95]) starts out from the construction of all the
possible rules and selects the relevant ones in the description of the system; that is
why we point it out as a selective or descendant methodology. We have presented
the experimental results obtained from a fuzzy control example and they are quite
satisfactory.

The second methodology extends a method for obtaining rules of production
with binary attributes [SES93] to obtain fuzzy rules which may allow the system to
be described. It determines the input variables which contribute to every possible
output and constructs fuzzy rules; that is why we describe it as a constructive
methodology.

Even though initial results look promising, the obtained rules may be tuned
to improve their performance. That is why we are considering alternative ways of
obtaining the corresponding labels for variables (step 6) as:

a) With the data from the system (examples) a fuzzy clustering is made, in
accordance with the experts’ criteria and/or those of the system to be solved.
For each variable in the system’s output, by using the coverage degree defined
in [BEN95] (see Section 3.1), we obtain the examples covered by the pre-rule
in each class (label) of the output variable, Y, above a (preset) level «, and
labels are obtained the same way before.

b) Other way is to obtain, for each example, the minimun level « in which the
rule cover to each example, for each label of the variable Y. Then, the same
process as above is carried out, except that the rules obtained are dependent
on level. In the latter case, we are considering two possibilities:

e With a degree of precision a, each pre-rule covers a given set of examples.
We construct the membership function with these examples for each
variable (its label) in the rule. This is done by considering the median
(triangular numbers) or 2 percentiles (trapezoidal ones). This gives a
good overall set of rules at the level of a. We believe this is better than
the previous one.

e With a degree of precision «, each example shall or shall not be covered
by a rule. The example’s degree of membership (i.e., from the value
of the corresponding attribute) is the lowest of these a. Construct the
membership function using these membership degrees.

c) To use a fuzzy clustering method to obtain the rules.
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Finally, we are also considering the distribution of information by using several
networks trained with backpropagation. Each network would learn the examples
of a pre-rule, which have been previously clustered.
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